Hash Functions and Collision
Resolution

Welcome to the lecture on hash functions and collision resolution methods! Today, we
will explore one of the most crucial tools in a programmer's arsenal.

Hash Functions and Hash
Tables

Separate Chaining Method for Collision Resolution

O1 02 03
Understanding Hash Functions Exploring Collisions Separate Chaining Method
We will study the principles of operation and We will analyze problems and solutions Practical implementation in C++

purpose

Data -
Structures

Lecture Topic Sub-topic = g
Hash functions and hash tables as Chaining method for collision = . [[SSSS Q| S
the basis for efficient data retrieval resolution - an elegant solution to an

inevitable problem

BEnE ErEne

Learning Objective

Understand the structure of hash functions, the nature of collisions, and how to
handle them

+ Part 1. Hash Functions

What is a Hash Function? | h(key) — [0...m — 1]

A hash function is a mathematical where m is the size of the hash table
mapping that transforms a key of any

size (string, number, object) into a fixed-
range array index.

It's like a magical algorithm that takes
arbitrary data and outputs a number
that can be used as an address in a
table.

Everyday examples

10

Mailboxes Student Distribution Programming
At the post office, the recipient's surname At university, students are assighed to std::map in C++ and dictionaries in Python use
determines the box number alphabetically. This classrooms based on the first letter of their hashing for fast element lookup by key.

is the simplest example of hashing! surname — another example of a hash function.

Requirements for a Good Hash Function

Computation Speed Uniform Distribution Collision Minimization

The function should operate in O(1) time, Keys should be distributed as uniformly as A good function minimizes cases where
otherwise, the whole point of search possible across the table, avoiding different keys produce the same hash.
optimization is lost. clustering in individual cells.

[JJ Examples of Simple Hash Functions:
» h(k) = k mod m for numbers

« For strings: sum of ASCII codes of characters mod m

+ Part 2. Hash Tables

What is a hash table? Key operations:
A hash table is a data structure that * insert(key, value) - insertion
stores "key - value" pairs and provides o search(key) - search

fast access to data. « delete(key) - deletion

It's like a library catalog: by the book's
title (key), we instantly find its location
(value).

Average complexity: O(1)

\mor

Collision
resolutio

Collisions

A collision occurs when two or more different keys produce the same hash code and
claim the same table cell.

Inevitability Problem

Collisions are inevitable according to We need to decide where to place
the "birthday paradox" principle — the second element if its "ideal" spot
they will definitely occur even with a is already taken.

good hash function.

Solutions

There are several methods for collision resolution, and we will explore one of the
most popular.

+ Part 3. Chaining Method
Chaining Method

In the chaining method, each cell of the hash table contains not a single value, but a linked list of all elements that have the same hash.

Imagine a coat check: if several coats have the same hanger number, we simply hang them one after another on the same hanger.

L r4 3

Hashing Find Chain Operation

Calculate cell index Locate the correct list Add/search/delete in the list

Visualization of the Chaining Method

Consider a hash table of size m = 5 with a simple hash function h(k) = k mod 5:

Xaw-tabanua (m = 5);
0: = [15] — [20]

1: = [6]

2: (nycTo)

3: —>[18]

4. — [9] — [14]

It is clear that elements 15 and 20 fell into the same cell (0), since 15 mod 5 = 0 and 20
mod 5 = 0. They form a chain in the zero cell.

Similarly, 9 and 14 form a chain in the fourth cell, as both yield a remainder of 4 when
divided by 5.

chaining

C++ Implementation - Class Structure

#include
#include
#include
using namespace std;

struct HashTable {
int size;
vector> table;

HashTable(int s) : size(s), table(s) {}

int hashFunction(int key) {
return key % size;

}

void insert(int key) {

int idx = hashFunction(key);
table[idx].push_back(key);
}

bool search(int key) {

int idx = hashFunction(key);
for (int val : table[idx])

if (val == key) return true;
return false;

}

void remove(int key) {
int idx = hashFunction(key);
table[idx].remove(key);

}

void display() {

for (inti=0;i<size; i++){
cout <<i<<™™

for (int val : table[i])

cout <<val<<"->"

cout << "NULL" << endl;
}

}

b

Hash Table Usage Example

Program Code:

int main() {
HashTable ht(5);

ht.insert(15);
ht.insert(20);
ht.insert(9);

ht.insert(14);

ht.display();
cout << (ht.search(20) ?
"Found" : "Not found")

<< endl;

ht.remove(20);
ht.display();

return O;

Program Output:

0:15-> 20 -> NULL
1: NULL

2: NULL

3: NULL
4:9->14 -> NULL
Found

0: 15 -> NULL

1: NULL

2: NULL

3: NULL
4:9->14 -> NULL

B Lnc | SEXTIAXCETSENL))

=] B (ne T -onerspstioartohatiof)
== O U O I S
= =R
N tashi }

==
[1 1]
.
M pdmyi-even's oe-ttucte-swmilgiulongne
M il }58truolle--ale-celvede~-setilliesbnitond)
=
L1 1] 12l
EEEe
=
3-8] J |
. P F 1. T eat cantoj
N]|
BN loc-ice ¢
B tosbtoosntose teniitillntnj}
Bl conocpenens taer(

-B'rh,.rs-:u\edbc‘lesaote “E-_tinu-to--\Is-=Y 1-—tiag)

0

—T

Complexity 4,
Analysis

Chaining Method Complexity Analysis

Oo(1+a) O(h) O(n+m)

Average Complexity Worst Case Memory
where a = load factor when all elements fall into n elements + m table cells
one chain

The load factor a = n/m shows the average number of elements in one chain. With a <1,
performance remains excellent.

Advantages and Disadvantages of the Chaining Method

W Advantages

e Simplicity of implementation and
understanding

e Easily scalable with data growth
o Efficient memory utilization
e Supports any number of elements

e Deletion of elements does not
require restructuring

X Disadvantages

e Additional memory for list pointers

e Performance degradation with a high
load factor

e Poor data locality in memory

e Possible degradation to O(n) in the
worst case

Summary

Fast Search

Hash functions provide data retrieval in
constant time

Collisions are Inevitable

But there are effective methods to resolve
them

Chaining Method

One of the simplest and most popular
approaches to collision resolution

Review Questions for Self-Assessment

1 Why are collisions inevitable?

Consider the "birthday problem" principle and the limited table size with an
unlimited set of possible keys.

2 Differences from open addressing

Compare chaining with open addressing. What is the fundamental difference in
approaches?

3 Load factor and performance

How does the load factor affect operation execution time? What is the optimal
range?

Further Study

Now that you have mastered the basics of hash functions and the separate chaining method, are you ready for practical tasks? In the workshop, we
will implement a full-fledged hash table and test it on various datasets.

<[> L]
Practical Implementation Testing
Creating your own hash table from scratch Checking performance on different data

Optimization

Exploring other collision resolution methods

See you at the workshop! Prepare your questions and be ready to code. #

